友情提示
本站部分转载文章,皆来自互联网,仅供参考及分享,并不用于任何商业用途;版权归原作者所有,如涉及作品内容、版权和其他问题,请与本网联系,我们将在第一时间删除内容!
联系邮箱:1042463605@qq.com
机器学习常用算法对比总结
11
0
相关文章
近七日浏览最多
最新文章
机器算法领域有不少常用的算法,之前我们的文章都有进行分享。这篇文章,我们来汇总整理下,方便大家更好理解。
前阵子对机器学习的各算法进行了逐一讲解,为了让大家有更好地理解,现把算法进行汇总如下:
1、整体上这些算法都比较简单,可解释性都比较强,其异常值都比较敏感。其中支持向量机算法复杂度相较其它算法更高,决策树算法的可解释性会更强,朴素贝叶斯算法对异常值不会特别敏感。
2、从算法的分类上来说,k-means算法属于聚类算法,线性回归属于回归算法,其它都属于分类算法。
3、关于分类算法
对于算法的优缺点及适用场景,建议在理解算法的原理上去理解记忆。对于算法的熟练掌握更多是对算法工程师的要求,AI产品经理懂得基本原理及适用场景就好。
作者:厚谦,公众号:小王子与月季
本文由@厚谦 原创发布于人人都是产品经理,未经作者许可,禁止转载。
题图来自Unsplash,基于CC0协议。
该文观点仅代表作者本人,人人都是产品经理平台仅提供信息存储空间服务。
友情提示
本站部分转载文章,皆来自互联网,仅供参考及分享,并不用于任何商业用途;版权归原作者所有,如涉及作品内容、版权和其他问题,请与本网联系,我们将在第一时间删除内容!
联系邮箱:1042463605@qq.com